Three Accounts of the Velar Nasal in Dutch
Marc van Oostendorp
Meertens Institute, Royal Netherlands Academy of Arts and Sciences
Marc.van.Oostendorp@Meertens.KNAW.nl

Summary
The velar nasal in Dutch (and German) is different from other nasal consonants in several respects. Various accounts have been proposed to deal with this behaviour: the velar could be placeless, or it could be derived from a cluster with an obstruent. We discuss the problems with each of these accounts, and show that both need a few extra assumptions. We then propose a third account, which is built on these two assumptions alone.

Outline of this talk
1. Six observations on the velar nasal
2. /ŋ/ as a hidden cluster
3. /ŋ/ as a placeless segment
4. /ŋ/ as a velar nasal

Appendix: Stress

1. Six observations on the velar nasal

1.1. Phonotactic behaviour

For the sake of concreteness, we assume the following syllable template (Booij 1995):

(1)

Note: in my view, $X_5 = X_1$

Observation 1. (first approximation)
In Standard Dutch, /ŋ/ can only occupy the coda position X_4. Other nasal consonants are much less restricted.
Some dialects (Netherlands Low Saxonian; also Frisian) also allow syllabic nasals:

(3) \([\text{wetn}]\) ‘to know’ \([\text{pAkN}]\) ‘to take’ \([\text{lopm}]\) ‘to walk’

Observation I. (refinement)

In variants of Dutch, /\(\eta/\) can only occupy the rhymal position X3 and X4. Other nasal consonants are much less restricted.

Trommelen (1984) notes that this holds true only at the ‘phonological level’. Phonetically, /\(\eta/\) can also occur in X5, as the result of assimilation:

(4) \(\text{t}u\text{in-kabouter} [\text{nj}]\) ‘garden gnome’
 \(\text{kern-kop} [\text{nj}]\) ‘nuclear war head’

1.2. Assimilation to vowels

Like all nasal consonants, /\(\eta/\) can be the result of assimilation to an adjacent obstruent:

(5) \(i[\text{nj}]\)‘consequent, i[m]‘populair, i[n]‘transitief

In some variants of Dutch (Van den Berg 1943, Daan 1985, 1997, Van Ginneken 1935, Heeroma 1954, Hoeksema 1999, Kieft 1945, Scholtmeijer 1996, Verstegen 1953, Weijnen 1939, Daan 1951, Van Oostendorp 2000b), however, the /\(\eta/\) can also be the result of assimilation to a preceding vowel:

(6) a. \(\text{dans} ‘dance’ [\text{dанс}]\), \(\text{hond} ‘dog’ [\text{h웃}]\)
 b. \(\text{eend} [\text{eъnt}]\)
 c. \(\text{man} ‘man’ [\text{мAn}]\), \(\text{ramp} ‘disaster’ [\text{rAmp}]\)
These examples show that there is an extra condition: the assimilating vowel should be followed by a coronal consonant. I assume the reason is that this coronal 'protects' the word boundary from changing; cf. Van Oostendorp (2000b); the fact will be disregarded here.

Other vowel features do not have this property in any dialect:

\[(7) \quad \text{hond \ 'dog' *[hont], eend \ 'duck' *[en't] \]}

Observation II.
Velar nasals are the only consonants that can result from assimilation to a vowel.

It should be noted that Observation I also holds for the velar nasals of this type:

\[(8) \quad \text{maand \ 'month' [maent] \]}

This assimilation is thus of a different type ('phonological' rather than 'phonetic') than the one between consonants (cf. (4))

1.3. Tone behaviour

Maasbracht Dutch is one of the Dutch dialects in which we can find one of two tones on the main stressed syllable of the word, provided this has either a long vowel or a sonorant consonant:

\[(9) \quad \text{Maasbracht Dutch} \]
\[
\begin{array}{ll}
\text{falling tone} & \text{dragging tone} \\
\text{bi:} & \text{‘bee’} \\
\text{bu:} & \text{‘build’} \\
\text{mn} & \text{‘minus’} \\
\text{ml} & \text{‘to break’} \\
\end{array}
\]
\[
\begin{array}{ll}
\text{bi:} & \text{‘at’} \\
\text{bu:} & \text{‘construction’} \\
\text{mn} & \text{‘vile’} \\
\text{ml} & \text{‘mole’} \\
\end{array}
\]

Yet we do not find this contrast on short vowels followed by a velar nasal:

\[(10) \quad \begin{array}{ll}
\text{falling tone} & \text{dragging tone} \\
a. & \text{stran ‘severe’} \\
b. & \text{ston ‘stood’} \\
c. & \text{krn ‘bitch’} \\
\end{array} \]

It has been argued that falling tone is actually the default tone (Hermans 1994, Van Oostendorp 2000b). In that case we can summarise as follows:

Observation III.
Velar nasals cannot bear tone.

The velar nasals share this property with (word-internal) /r/.

1.4. Cluster development

In Eastern Dutch dialects (like in Northern German), /ŋ/ cannot be word-final; it should always be followed by a homorganic obstruent:

\[(11) \quad *[dŋ], [dŋk] \ ‘thing’ \]
Something like this does not hold for other nasals in any other dialect:

(12) [lʌm] 'lamb', [mæn] 'man

Observation IV.
Velar nasals need to be followed by a nasal obstruent (in some dialects)

This observation may or may not be linked to another fact about the velar nasal:

Observation V.
Velar nasals may not be followed by a full vowel; in this context we rather find [ŋy]

(13) a. *diftʊŋ [dɪftʊŋ] 'diphthong'
b. *diftʊŋerɛn [dɪftʊŋɛɾɛ], *[dɪftʊŋɛɾ] 'to diphthongize'

Before schwa, we find a reversed situation:

(14) c. *diftʊŋen *[dɪftʊŋɛɾ], [dɪftʊŋ] 'diphthongs'

Observation VI.
[ŋy] clusters cannot be followed by a schwa; in this context we rather find [ŋ]

Trommelen (1984) observes that preconsonantal we find both [ŋ] and [ŋy]:

ganglion [ŋyl] jongleur [ŋl] 'juggler'
mangrove [ŋyr] kongsi [ŋs] 'combine'
Ingewoon [ŋyw] Ingweoon [ŋw]

Several subregularities may be observed here (e.g. it seems to me that [ŋy] cannot be combined with [s] and [ŋy] cannot be combined with [r]), but I will leave this aside.

2. /ŋ/ as a hidden cluster

Hidden Cluster Analysis
[ŋ] is /ŋ/ or /ŋy/ at some level of representation.

Observation I is explained right away, since [ŋ] is allowed exactly in the same configurations as nasal+obstruent clusters:

(16) a. *[ŋa], ok[ŋu], *[aŋ]
b. *[mpa], ok[amp], *[aːmp]
Yet Observation II constitutes a problem for this account: if velar nasals which are the result of assimilation to a vowel (hence not to some putative underlying consonant), it is not clear why they obey the same syllabic restrictions as those in (12):

(16) c. *[ŋat] [nat] 'wet', *[dans] [dans] 'dance', *[maʊnt] [maʊnt] 'month',

Observation III might be related to the fact that nasal+obstruent clusters also do not show tone contrast. Yet in these cases, it is consistently a dragging tone that shows up. It is not clear, then, how the explanation would work.

Observation IV of course follows directly from this theory; if all dialects have the same underlying form, it is to be expected that the cluster reduction process does not apply everywhere. Observations V and VI could be taken as indications about the precise way in which this process operates.

Under the Hidden Cluster Analysis, we need to add at least assumptions about:
- the fact that these processes involve velars
- the fact that it involves nasals and place; and that nasals are well-known for being sensitive to place assimilation anyway

Further problems:
- Richness of the Base: What happens to a putative input [dn]?
- Why does cluster reduction only apply to velar clusters?
- (Trommelen 1983, 1984): In diminutive formation, [ŋ] behaves like a single sonorant segment, rather than a cluster:

(17) a. ram-netje 'ram' b. Mok-ŋje 'Amsterdam'
 man-netje 'man' heid-ŋje 'heathen'
 bal-letje 'ball' druppel-ŋje 'drop'
 kar-retje 'car' werk-ŋje 'worker'
 rau-ŋstje 'order' houd-ŋ-ŋje 'attitude'

(18) lamp-ŋje 'lamp'
 vent-ŋje 'bloke'
 *rang-ŋje

Trommelen notes that this is not necessarily an argument against the HCA, since it could be the case that diminutive formation applies at a level in which /ŋ/ no longer behaves like a cluster.
- Similarly (Trommelen 1984:174), [ŋ] can no longer be a cluster at the level at which voicing assimilation of obstruent clusters applies:

(19) brood-zaag [ts] 'bread-knife' denk-vorm [kf] 'way of thought'
 kaaz-fondue [sf] 'hot cheese' dank-zegging [ks] 'acknowledgements'

(20) meng-vorm [ŋv] 'mixture' zang-zaad [ŋz] 'singing-seed'
3. /ŋ/ as a placeless segment

<table>
<thead>
<tr>
<th>Placeless Segment Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ŋ] is a unspecified for Place of Articulation at some level of representation.</td>
</tr>
</tbody>
</table>

This analysis is inspired by the fact that in some languages, velar nasals clearly behave as placeless. E.g. in Japanese, a nasal in coda position assimilates in place to an immediately following consonant. Yet if this nasal occurs prepausally it is realised as "unreleased, either velar, or uvular" (Yip 1991):

Similarly in some European Portuguese dialects (Barbosa 1965, Trigo 1993), nasal vowels at a certain point became denasalised. The resulting nasal consonant presents is velar before a pause (and assimilates to a following consonant in other contexts, just as in Japanese):

(22) b[ʒ] → b[ɔŋ] 'good'
 rw[i] → rw[iŋ] 'basis'

Some people have observed in personal communication to me that something along these lines happens in variants of Dutch as well, in which one says [restoran]. I have not found confirmation for this.

Observation I might follow if we assume that placeless segments all have a limited distribution: [h] and [?] only appear in the onset, [ə] only appears in the nucleus, [ŋ] only appears in the coda. It is as yet unclear what would in turn explain this complementary distribution.

Observation II and any type of assimilation is a problem for this account: why should a placeless nasal prefer the context of a velar segment? Furthermore, in Dutch dialects (like in other Germanic languages), the consonant that shows up in non-alternating contexts (i.e. before a pause or a vowel) is [ŋ]:

(23) i[ŋ]actief

'Underlying' [ŋ] never alternates. For similar reasons, Observation IV is a complete mystery for this analysis.

Observation III may follow, under some plausible account as to why tone-bearing units should not be empty; the fact that [r] obeys the same restriction may be seen as an extra indication, since this segment behaves as placeless in this dialect in some other ways as well.

Observation V and in particular Observation VI are quite mysterious from the point of view of this analysis. As a matter of fact, other empty consonants are not allowed to occur next to a schwa at all:

(24) *[ŋɔ], *[ŋə], *[ŋʔ], *[ŋh]
Under the Placeless Segment Analysis, we need to add at least assumptions about:
- the fact that these processes involve velars in coda’s
- the fact that it involves nasals in coda’s and place; and that nasals are well-known for being sensitive to place assimilation in coda position

4. /ŋ/ as a velar nasal

Neither the Hidden Cluster Analysis nor the Placeless Segment Analysis is entirely successful in explaining all the relevant facts. Furthermore, both of them need to make at least two extra assumptions.

I try to construct an analysis on these two assumptions without either the Hidden Cluster Analysis or the Placeless Segment Analysis. This is at least as successful as the previous two.

We restate the relevant assumptions in the form of constraints:

(25) NASALPLACE:
A nasal in the rhyme needs to share its place with an adjacent segment (preferably a consonant).

(26) VELAR:
A nasal is velar iff it appears in the coda

In spite of the fact that these constraints seem empirically justified — we need them also under the Hidden Cluster Analysis or the Placeless Segment Analysis — it would be good to have some independent justification.

As to (18) (which I suppose is hardly controversial), this justification might be provisionally found in phonetic grounding: place is hardly distinctive on nasals.

As to (19), two observations can be made:
(i) Levelt (1994) observes that something more general is going on in child language. At a certain stage of development, children are able to pronounce a word such as (27a), but not (27b):

(27) a. poes [pus] ‘pussycat’
b. soep [sup] ‘soup’

This might be due to a more general restriction on child language of the following type:

(28) [-back] segments occur in the beginning of words; [+back] segments at the end of words

(19) can be seen as a slightly more general version of this constraint.

(ii) Furthermore, studying Cologne German (Scheer 1999), we find out that (19) is not necessarily restricted to nasals:
So, whatever the source of these restrictions, we seem to need them anyway.
I think it is possible to given an account of the observations I-VI without taking recourse to hidden clusters or placeless segments. I call this the Velar Nasal Analysis:

<table>
<thead>
<tr>
<th>Velar Nasal Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ŋ] is a single velar nasal at all levels of representation</td>
</tr>
</tbody>
</table>

Observation I follows, or, to be more precise, (19) is a way of formulating this observation as a constraint, especially if we consider that \(X_5 = X_1 \).

Observation II also follows from (19) and (18), under an appropriate constraint ranking. Usually, a nasal would assimilate to an adjacent consonant, rather than to an adjacent vowel. Yet if this can make the nasal velar, it can exceptionally also assimilate to a vowel. For other places of articulation, there is no such independent force.

Observation III needs a somewhat different explanation now. Recall that \([r]\) displays the same behaviour; now, \([r]\) clearly has a velar/uvular articulation in the dialect under discussion. It might therefore be the case that in this dialect there is a cooccurrence restriction on tone and velarity (for whatever reason)

(30) **ANCHOR**
The final segment of the word should not change (its place specification) (Van Oostendorp 2000b)

<table>
<thead>
<tr>
<th>(31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kan</td>
</tr>
<tr>
<td>kan</td>
</tr>
<tr>
<td>*^ kan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kunt</td>
</tr>
<tr>
<td>k^unt</td>
</tr>
<tr>
<td>kant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>zin</td>
</tr>
<tr>
<td>z^in</td>
</tr>
</tbody>
</table>
| zin | *! | | *

(29) Standard German	Cologne German
Zeit [tsajt] ‘time’ | Zick [tsik]
Leute [lojta] ‘people’ | Lück [lyk]
schneiden [tnajdən] ‘cut’ | schigge [tniːɡ]
brun [brawn] ‘brown’ | brung [bruːŋ]
binden [bindən] ‘to bind’ | binge [biɲə]
bunt [bunt] ‘colourful’ | bungk [buŋk]
We actually predict that there are dialects in which the velarisation is not just the result of ‘assimilation’, but persistent across dialects. These actually exist, in Limburg (more or less neighbouring Cologne):

\[
\begin{array}{|c|c|c|}
\hline
\text{vent} & \text{VELAR} & \text{ASSIMILATE} \\
\hline
\text{vent} & * & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{hant} & \text{VELAR} & \text{ASSIMILATE} \\
\hline
\text{hant} & * & \\
\hline
\end{array}
\]

Observation IV and **Observation V** follow directly from (18) (but it is not clear why this applies exactly to velar nasals; this remains a puzzle).

Observation VI remains somewhat of a mystery — this is probably a property of schwa; clusters before schwa behave as if they are word-final (Kager and Zonneveld 1986). The fact that a velar nasal can occur next to a schwa is no longer a real mystery.

Appendix: Stress

It is thus possible to analyse the velar nasal as a velar nasal, given a few assumptions. We have also seen, that the analysis is not without problems. In this section a few other curious properties of velar nasals are mentioned, that are hitherto unexplained:

Observation VII.
Final syllables on [j] avoid stress. They are only stressed if they are the only syllable in the word, or if the other syllable contains a schwa.

(36) a. woning 'house', haring 'herring', koning 'king'
 b. ring 'ring', ding 'thing', zing 'sing'
 c. sering 'lilac'

(37) a. sárong 'id., Indonesian dress', kámpong 'id.,'
 b. zong 'sang', tang 'pair of tongs', long 'lung'
 c. senáng [sénaŋ] 'happy'

This observation seems in direct conflict with the Hidden Cluster Analysis, since consonant clusters make a syllable superheavy, hence attract stress. Yet neither the Placeless Segment Analysis, nor the Velar Nasal Analysis has anything to say about this observation either.

Appendix: Richness of the Base

As far as observation IV is concerned, there are two dialects of German, just like there are two dialects of Dutch:
Itô and Mester argue for constraints of the following:

(39)
 a. *VC: No voiced codas
 b. *VCDC: No voiced dorsal plosives in complex codas
 c. Ident(voice): input specifications for [voice] should be respected in the output.
 d. Max: underlying segments should surface

(39a) is the constraint that is responsible for Final Devoicing

(40)
\[
\begin{array}{|c|c|c|c|}
\hline
\text{/tag/} & \text{*VC} & \text{Max} & \text{Ident(voice)} \\
\hline
\text{tag} & *! & & \\
\hline
\text{ta} & *! & & \\
\hline
\text{ṭak} & & & * \\
\hline
\end{array}
\]

The constraint *VCDC becomes relevant in the analysis of /diŋ/:

(41)
\[
\begin{array}{|c|c|c|c|}
\hline
\text{/diŋ/} & \text{*VCDC} & \text{Max} & \text{Ident(voice)} \\
\hline
\text{diŋ} & *! & & \\
\hline
\text{diŋ} & *! & & \\
\hline
\text{ṭdiŋ} & & & * \\
\hline
\end{array}
\]

The problem mainly resides with Standard German forms. Standard German displays final devoicing effects as well as CNG, so that we have evidence for the ranking Ident(voice) » Max also here. Yet according to the logic of (40), this should mean that the surface form [diŋ] should be optimal in this variant as well.

If we assume that in Standard German the input for these forms is /diŋ/, the constraint Dep will always choose the winner, independent of its ranking.

(42)
\[
\begin{array}{|c|c|c|c|}
\hline
\text{/diŋ/} & \text{*VCDC} & \text{Max} & \text{Ident(voice)} & \text{Dep} \\
\hline
\text{diŋ} & * & & *! \\
\hline
\text{ṭdiŋ} & & & *! \\
\hline
\text{diŋ} & & & *! \\
\hline
\end{array}
\]

Unfortunately, under the Richness of the Base hypothesis, we are not allowed to restrict the focus of our attention to the input /diŋ/ only; we need to have some plausible story about /diŋ/ as well.
It is actually not very difficult to describe these patterns if we allow ourselves to assume that the underlying form in Standard German is `/diftɔŋ/` and the underlying form in CNG is `/diftɔŋg/`. Only two changes are needed in this case (apart from Final Devoicing which is independently necessary as we have seen): in Common Northern German `/g/` has to be deleted before a schwa, and in Standard German `/g/` has to be inserted before a full vowel.

(44) a. `[ŋə]: [ŋ] should be followed by schwa
b. *[ŋV]: [ŋ] should not be followed by a full vowel

With these two constraints, we can actually account for the full range of patterns in both dialects:

<table>
<thead>
<tr>
<th></th>
<th>Standard German</th>
<th>CNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before word boundary</td>
<td>input <code>/diftɔŋ/</code></td>
<td>do nothing</td>
</tr>
<tr>
<td></td>
<td>input <code>/diftɔŋg/</code></td>
<td>delete <code>/g/</code></td>
</tr>
<tr>
<td>Before schwa</td>
<td>input <code>/diftɔŋ/</code></td>
<td>do nothing</td>
</tr>
<tr>
<td></td>
<td>input <code>/diftɔŋg/</code></td>
<td>delete <code>/g/</code></td>
</tr>
<tr>
<td>Before full vowel</td>
<td>input <code>/diftɔŋ/</code></td>
<td>insert <code>[g]</code></td>
</tr>
<tr>
<td></td>
<td>input <code>/diftɔŋg/</code></td>
<td>do nothing</td>
</tr>
</tbody>
</table>

The only ranking that is relevant here is that *[ŋV] » Dep(g).*

(46) CNG

<table>
<thead>
<tr>
<th></th>
<th>[ŋə]</th>
<th>Max(g)</th>
<th>*[ŋV]</th>
<th>Dep(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>diŋ</td>
<td>*</td>
<td>*</td>
<td>![]</td>
<td></td>
</tr>
<tr>
<td>diŋk</td>
<td>*</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>diŋa</td>
<td>*</td>
<td>![]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diŋo</td>
<td>![]</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>diftɔŋiran</td>
<td>*</td>
<td>*[ŋV]</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>![]</td>
<td>![]</td>
<td></td>
<td>![]</td>
<td></td>
</tr>
</tbody>
</table>

In this case, the only relevant ranking is `[ŋə] » Max(g). The ranking of the other constraints cannot be determined. Since this is so, Standard German and CNG could actually be assumed to have the same grammar (in which *[ŋV] » Dep(g) and [ŋə] » Max(g)) if this would prove useful.
Things are not as simple if we have to strictly adhere to Richness of the Base. The patterns before schwa and before a full vowel do not pose any specific problems, since they are the same in the two dialects:

<table>
<thead>
<tr>
<th>Standard German Input /...ŋg/</th>
<th>[ŋə]</th>
<th>Max(g)</th>
<th>*[ŋV]</th>
<th>Dep(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>diŋə</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dŋga</td>
<td>*?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diŋəran</td>
<td>*</td>
<td>*?</td>
<td>*?</td>
<td></td>
</tr>
<tr>
<td>dŋəriran</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CNG Input /...ŋ/</th>
<th>[ŋə]</th>
<th>Max(g)</th>
<th>*[ŋV]</th>
<th>Dep(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dŋə</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dŋga</td>
<td>*?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diŋəran</td>
<td>*</td>
<td>*?</td>
<td>*?</td>
<td></td>
</tr>
<tr>
<td>dŋəriran</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The grammars of the two languages can thus still be the same. The pattern before pause is where the real problem is.

(49) *[ŋ#]: [ŋ] should not be followed by a word boundary.

(50) *[ŋ#] » Max(g), Dep(g)

But this is what happens to the inputs /dəŋ/ and /dŋəŋ/ in Standard German:

(51) Dep(g) » *[ŋ#]

<table>
<thead>
<tr>
<th>/dŋ/</th>
<th>Dep(g)</th>
<th>*[ŋ#]</th>
</tr>
</thead>
<tbody>
<tr>
<td>diŋ</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>dŋk</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Itô and Mester (1999) propose that the solution to this riddle is constraint conjunction

b. *ṅC: [ŋ] should not occur in a consonant cluster.

We now have the following grammar accounting for the output [dŋ] from the input /dŋg/:

<table>
<thead>
<tr>
<th>/dŋg/</th>
<th>Ident-voice ∧ *[ŋC]</th>
<th>Max(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dŋ</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>dŋk</td>
<td>*?</td>
<td></td>
</tr>
</tbody>
</table>

If we now turn our attention to Dutch dialects, the situation becomes even more complicated.
For Dutch we have to postulate something like (56):

(56) *[g]: No voiced velar stops

<table>
<thead>
<tr>
<th>Standard Dutch</th>
<th>[ŋa]</th>
<th>Max(g)</th>
<th>*[ŋV]</th>
<th>Dep(ŋ)</th>
<th>*[ŋ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>diŋ</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diŋk</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diŋa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dintongren</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dintongren</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eastern Dutch</th>
<th>[ŋa]</th>
<th>Max(g)</th>
<th>*[ŋV]</th>
<th>Dep(ŋ)</th>
<th>*[ŋ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>diŋ</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diŋk</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diŋa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dintongren</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dintongren</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If we have to strictly adhere to Richness of the Base, the analysis becomes much more complicated. The problems mentioned for the German dialects of course arise again. It even becomes more obvious that the split into two possible dialects is a real one; there are no ‘in between’ dialects in Dutch. Furthermore it now becomes obvious that we could also assume that the *fricative* is underlying:

(59) *[ŋ]: A nasal should not be followed by a (homorganic) fricative.

This constraint is well known from the literature (cf. Padgett 1994, Van Oostendorp 2000):

<table>
<thead>
<tr>
<th>/dŋŋ/</th>
<th>*[ŋ]</th>
<th>Max(g)</th>
<th>Ident-continuant (Ident-voice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>diŋ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diŋx</td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td> diŋk</td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
</tbody>
</table>
The question now arises however why, if *ŋŋ is so strong, the same ranking does not cause the same effect (in this case, hardening) in other circumstances, such as in the context before schwa:

(61)

<table>
<thead>
<tr>
<th>/diftɔŋ/ + /ɪŋə/</th>
<th>*[ŋ]</th>
<th>*[ŋ]</th>
<th>Max(g)</th>
<th>Ident-continuant (Ident-voice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\diftɔŋmɛa</td>
<td>*!</td>
<td>*!</td>
<td>*</td>
<td>(*)</td>
</tr>
<tr>
<td>\diftɔŋmɛa</td>
<td>*!</td>
<td></td>
<td></td>
<td>(*)</td>
</tr>
<tr>
<td>\diftɔŋkɛa</td>
<td></td>
<td></td>
<td>*(!)</td>
<td>(*)</td>
</tr>
</tbody>
</table>

More generally, we need to have a story about inputs with a fricative, inputs with a voiced stop and inputs with just a velar nasal under the Richness of the Base hypothesis. Since these putative underlying forms correspond fairly closely to at least one of the output forms, it seems most reasonable to assume that these can surface in some (non-null) way, and if they do, that they would pattern alike. This would give us the following table:

(62)

<table>
<thead>
<tr>
<th>Before word boundary</th>
<th>Standard German</th>
<th>CNG</th>
<th>Standard Dutch</th>
<th>Eastern Dutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>/diftɔŋ/</td>
<td>do nothing</td>
<td>insert [k]</td>
<td>do nothing</td>
<td>insert [k]</td>
</tr>
<tr>
<td>/diftɔŋg/</td>
<td>delete /g/</td>
<td>devoice</td>
<td>delete /g/</td>
<td>devoice</td>
</tr>
<tr>
<td>/diftɔŋγ/</td>
<td>delete /γ/</td>
<td>harden, devoice</td>
<td>delete /γ/</td>
<td>harden, devoice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Before schwa</th>
<th>Standard German</th>
<th>CNG</th>
<th>Standard Dutch</th>
<th>Eastern Dutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>/diftɔŋ/</td>
<td>do nothing</td>
<td>do nothing</td>
<td>do nothing</td>
<td>do nothing</td>
</tr>
<tr>
<td>/diftɔŋg/</td>
<td>delete /g/</td>
<td>delete /g/</td>
<td>delete /g/</td>
<td>delete /g/</td>
</tr>
<tr>
<td>/diftɔŋγ/</td>
<td>delete /γ/</td>
<td>delete /γ/</td>
<td>delete /γ/</td>
<td>delete /γ/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Before full vowel</th>
<th>Standard German</th>
<th>CNG</th>
<th>Standard Dutch</th>
<th>Eastern Dutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>/diftɔŋ/</td>
<td>insert [g]</td>
<td>insert [g]</td>
<td>insert [γ]</td>
<td>insert [γ]</td>
</tr>
<tr>
<td>/diftɔŋg/</td>
<td>do nothing</td>
<td>do nothing</td>
<td>spirantise</td>
<td>spirantise</td>
</tr>
<tr>
<td>/diftɔŋγ/</td>
<td>harden</td>
<td>harden</td>
<td>do nothing</td>
<td>do nothing</td>
</tr>
</tbody>
</table>

(63) Ident(dorsal-of-stop)⇒*ŋŋ⇒Ident(dorsal)).
References

Observation I.
In variants of Dutch, /ŋ/ can only occupy the rhymal position X3 and X4. Other nasal consonants are much less restricted.

Observation II.
Velar nasals are the only consonants that can result from assimilation to a vowel.

Observation III.
Velar nasals cannot bear tone.

Observation IV.
Velar nasals need to be followed by a nasal obstruent (in some dialects)

Observation V.
Velar nasals may not be followed by a full vowel; in this context we rather find [ŋŋ]

Observation VI.
[ŋŋ] clusters cannot be followed by a schwa; in this context we rather find [ŋ]