Is what we have acquired early, less vulnerable to variation? A comparison between data from dialectlexicography and data from first language acquisition

In language acquisition, it is assumed that the first few years of life is the crucial time in which a child can acquire a language. Deane (1992: 194-195) claims that there is a relation between age of acquisition of a lexical item and its level of entrenchment. In particular, the younger an item has been acquired by the child, the deeper that item will be entrenched.

The variability of lexical variation in a small language area can be very different. For specific notions such as ‘blue titmouse’, ‘thunder-shower’ or ‘pointy chin-beard’ lexicographers find a sometimes overwhelming number of different, geographically restricted, words and wordings (Swanenberg 2004, 2010). For other, more generic notions like ‘bird’, ‘sun’ or ‘nose’ there’s hardly any or no lexical variation at all. Such concepts often are regarded as basic level objects and their lexicalisation constitutes basic level vocabulary. An explanation of the lexical stability of basic level vocabulary might be that these basic level objects are concepts that are deeper entrenched than other objects (Geeraerts et al. 1994: 138-142). For instance the hyponyms, names for subcategories of basic level objects, are supposed to be less salient, less entrenched, and therefore show a high degree of lexical variation.

In this talk, we explore the idea that there is a relation between the age of acquisition of a lexical item and the degree of variation by comparing two large databases i.e. Childes (MacWhinney 2000, 2007) for monolingual Dutch
children (age of acquisition) and the Brabantic and Limburgian dialect dictionaries (degree of lexical variation in geographical space). The degree of lexical variation is determined by (i) the diversity of the lexical items (type/token ratio TTR), (ii) heterogeneity (inter-group variation versus intra-group variation, measured with silhouette index S) and (iii) entropy (H, considers proportions of terms per concept).

References

